Telegram Group & Telegram Channel
Можно ли доверять feature importance из моделей машинного обучения

Только с оговорками. Feature importance помогает понять, какие признаки влияют на предсказание, но интерпретация зависит от типа модели и метода оценки важности.

Что нужно учитывать

1. Важность ≠ причинность
Высокое значение признака в модели не означает, что он вызывает результат — он просто помогает предсказывать его.

2. Коррелирующие признаки могут путать
Если несколько признаков связаны между собой, модель может «размазать» важность между ними или отдать её только одному, что исказит интерпретацию.

3. Разные методы — разные результаты
В деревьях часто используется Gini importance или gain, но они чувствительны к масштабам.
В моделях типа XGBoost можно использовать SHAP для более надёжной оценки вклада признаков.
Линейные модели дают понятные веса, но только при отсутствии мультиколлинеарности.

Как подходить к анализу признаков

Используйте несколько методов (например, permutation importance + SHAP).
Учитывайте контекст задачи и доменную экспертизу.
Не делайте выводов о «причинности» только по важности признаков — используйте дополнительные анализы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/975
Create:
Last Update:

Можно ли доверять feature importance из моделей машинного обучения

Только с оговорками. Feature importance помогает понять, какие признаки влияют на предсказание, но интерпретация зависит от типа модели и метода оценки важности.

Что нужно учитывать

1. Важность ≠ причинность
Высокое значение признака в модели не означает, что он вызывает результат — он просто помогает предсказывать его.

2. Коррелирующие признаки могут путать
Если несколько признаков связаны между собой, модель может «размазать» важность между ними или отдать её только одному, что исказит интерпретацию.

3. Разные методы — разные результаты
В деревьях часто используется Gini importance или gain, но они чувствительны к масштабам.
В моделях типа XGBoost можно использовать SHAP для более надёжной оценки вклада признаков.
Линейные модели дают понятные веса, но только при отсутствии мультиколлинеарности.

Как подходить к анализу признаков

Используйте несколько методов (например, permutation importance + SHAP).
Учитывайте контекст задачи и доменную экспертизу.
Не делайте выводов о «причинности» только по важности признаков — используйте дополнительные анализы.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/975

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA